Preview

Plant Health and Quarantine

Advanced search

Evaluation of the real-time PCR applicability for the identification of bacterial ear rot of wheat Rathayibacter tritici

https://doi.org/10.69536/FKR.2025.85.45.003

Abstract

Bacterial ear rot of wheat Rathayibacter tritici (Carlson & Vidaver) Zgurskaya et al. is included in the Common List of Quarantine Pests of the Eurasian Economic Union. Rapid identification of the pathogen is an important element in the field of plant quarantine. The “real time” PCR method (real-time PCR) is the most optimal for laboratory diagnosis. Currently, there are only two real-time PCR tests for identification of Rathayibacter tritici developed by Postnikova et al., 2017. The tests are designed to identify Rathayibacter tritici in pure bacterial cultures. The original article does not contain information on the values of the main parame- ters of the real-time PCR test applicability – analytical specificity, including exclusivity and inclusivity, and analytical sensitivity, as well as on testing the test for detecting the pathogen in plant samples. The aim of this work was to assess the applicability of previously known real-time PCR tests for the identification of R. tritici. The study materials were R. tritici strains, as well as 26 strains of bacteria of the genus Rathayibacter, including all existing species within this genus. As a result of assessing the applicability of real-time PCR tests for the identification of the causative agent of bacterial ear rot of wheat Rathayibacter tritici, it was found that the inclusivity value – the ability of the test to identify the entire diversity of bacterial strains within a species – for the studied tests is 83.3%. The use of these tests allowed us to identify 5 out of 6 strains of the target object – Rathayibacter tritici. The exclusivity value – the ability of the test to distinguish target strains from non-target ones – was 100% for both tests. The real-time PCR tests developed by Postnikova et al., 2017, despite their high exclusivity (100%), are not applicable for phytosanitary diagnosis, since in the case of their use the risk of false negative results and, as a consequence, the introduction of the quarantine pest into new territories is quite high.

About the Authors

R. R. Obolensky
Federal State Budgetary Institution “All-Russian Plant Quarantine Center” (FGBU “VNIIKR”); Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation

Roman Obolensky, Junior Researcher, Research and Methodology Department of Bacteriology

Bykovo, Ramenskoye, Moscow Oblast, 140150; Moscow, 127434



O. Yu. Slovareva
Federal State Budgetary Institution “All-Russian Plant Quarantine Center” (FGBU “VNIIKR”);Federal State Autonomous Educational Institution of Higher Education “Patrice Lumumba Peoples’ Friendship University of Russia” (RUDN University)
Russian Federation

Olga Slovareva, Senior Researcher – Acting Head of Research and Methodology Department of Bacteriology

Bykovo, Ramenskoye, Moscow Oblast, 140150; Moscow, 117198



L. V. Dorofeeva
Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” (G.K. Scriabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences)
Russian Federation

Liubov Dorofeeva, Senior Researcher, Actinomycetes Sector

Pushchino, 142290



References

1. Beloshapkina O.O., Pisareva I.N. Determination of the analytical sensitivity and specificity of PCR met hods for the diagnosis of bacterial spot of tomato [Opredeleniye analiticheskoy chuvstvitel’nosti i spetsifichnosti metodov PTSR dlya diagnostiki chernoy bakterial’noy pyatnistosti tomata]// Izvestiya of Timiryazev Agricultural Academy. 2024; 1(3): 78–94. doi: 10.26897/0021-342X-2024-3-78-94. (In Russ.)

2. Voronov E.V., Slovareva O.Y., Desyaterik A.A., Kondratiev M.O., Ignatov A.N. Identification of stem melanosis of wheat (Pseudomonas cichorii) by the real-time PCR method // Plant Protection News (Vestnik Zashchity Rasteniy). 2024; 107(3): 121–129. doi: 10.31993/2308-6459-2024-107-3-16657. (In Russ.)

3. Domoratskaya D.A., Ignatyeva I.M., Kononova E.P. New diagnostic PCR-tests for bacterial wilt of lucerne Clavibacter insidiosus detection // genetic and radiation technologies in agriculture: Collection of reports of the III International youth conference, Obninsk, October 23–24, 2024. – Publishing house of the National Research Center “Kurchatov Institute” – VNIIRAE. 2024. P. 34–36. (In Russ.)

4. Karakay M.V., Ignatieva I.M. An experience of PCR diagnostics methods introduction in searching and identification of Xanthomonas Axonopodis pv. Phaseoli, the causative agent of common bacterial blight of bean // Plant Health and Quarantine. 2024; S2-1(18): 14. (In Russ.)

5. Obolensky R.R., Slovareva O.Y. Rathayibacter tritici morphological features on nutrient media NBY, YPGA and R2A // Plant Health and Quarantine. 2024; S2-1(18): 18. (In Russ.)

6. Prikhodko S.I., Pisareva I.N., Kornev K.P., Bondarenko g.N., Valeeva N.G., Radionovskaya Y.E. Isolation protocol trials for grapevine bacteriosis (Pierce’s disease) agent Xylella fastidiosa Wells et al. during research monitoring of the Republic of Crimea. Horticulture and viticulture. 2021; (1):39-47. doi: 10.31676/0235-2591-2021-1-39-47. (In Russ.)

7. Slovаrevа O. Y. Production, export and import of cereals and compilation of a list of phytopathogenic bacteria associated with them // Agrarian Bulletin of the North Caucasus. 2023; 3(51): 47–54. doi: 10.31279/2949-4796-2023-3-51-47-54. (In Russ.)

8. Slovareva O.Y., Trunov V.V., Prisyazhnaya N.V., Dorofeeva L.V. New actinobacteria of the genus Rathayibacter from agrobiocenoses of regions of the Russian Federation // Plant Health and Quarantine. 2024; S2- 1(18): 23. (In Russ.)

9. Slovareva O.Y., Kornev K.P. Determination of analytical specificity of PCR methods for Acidovorax citrulli identification. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya = Tomsk StateUniversity Journal of Biology. 2020; 51:25-45. doi: 10.17223/19988591/51/2. (In Russ.)

10. Tarakanov R.I., Ignatyeva I.M., Beloshapkina O.O., Chebanenko S.I., Karataeva O.G., Dzhalilov F.S. Detection of the soybean bacterial blight pathogen Pseudomonas Savastanoi pv. glycinea in seeds by the PCR method // Izvestiya of Timiryazev Agricultural Academy. 2024; 1: 41–52. doi: 10.26897/0021-342X-2024-1-41-52. (In Russ.)

11. Shashkov A.S., Tulskaya E.M., Streshinskaya g.M., Dmitrenyuk A.S., Potekhina N.V., Senchenkova S.N., Piskunova N.F., Dorofeeva L.V., Evtushenko L.I. Rhamnomannans and teichuronic acid from the cell wall of Rathayibacter tritici VKM Ac 1603Т // Biochemistry. 2020; 85(3): 428–437. doi: 10.31857/S0320972520030124. (In Russ.)

12. Updated phytosanitary requirements of Bangladesh 2015 / Rosselkhoznadzor. Federal Service for Veterinary and Phytosanitary Surveillance. URL: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://fsvps.gov.ru/sites/default/files/fsvps-docs/ru/importExport/bangladesh/files/phyto_requirements_bangladesh.pdf (last accessed: 10.01.2025).

13. Oligo Calc: a program for calculating the properties of oligonucleotides (primers). URL: http://www.bio.bsu.by/molbiol/oligocalc.html (last accessed: 03.04.2023).

14. List of quarantine pests for the Republic of Uzbekistan / Rosselkhoznadzor. Federal Service for Veterinary and Phytosanitary Surveillance. URL: https://fsvps.gov.ru/sites/default/files/files/ehksport-import/uzbekistan/aktualnyy_perechen_vrednyh_organizmov_karantinnogo_znacheniya_dlya_respubliki_uzbekistan.pdf.

15. List of pests prohibited for the import and distribution in the Republic of Moldova / Rosselkhoznadzor. Federal Service for Veterinary and Phytosanitary Surveillance. URL: https://fsvps.gov.ru/sites/default/files/fsvps-docs/ru/importExport/moldova/files/entity_denied.pdf).

16. Decision of the Council of the Eurasian Economic Commission of November 30, 2016 No. 158 “On approval of a Common list of quarantine pests of the Eurasian Economic Union” (with amendments and additions). URL: https://base.garant.ru/71623912/.

17. Decision of the Council of the Eurasian Economic Commission of November 30, 2016 No. 157 “On approval of the Common Quarantine Phytosanitary Requirements for Regulated Articles and Quarantine Pests at the Customs Border and on the Customs Territory of the Eurasian Economic Union” (with amendments and additions). URL: (https://fsvps.gov.ru/files/reshenie-soveta-evrazijskoj-jekonomich-6/.

18. Baek K.Y., Lee H.H., Son g.J., Lee P.A., Roy N., Seo Y.S., Lee S.W. Specific and Sensitive Primers Developed by Comparative genomics to Detect Bacterial Pathogens in grains // The Plant Pathology Journal. 2018. Vol. 34(2). P. 104-112. doi: 10.5423/PPJ.OA.11.2017.0250.

19. EPPO. PM 7/76 (5) Use of EPPO diagnostic standards //EPPO Bulletin. – 2018. – Т. 48. – P. 373–377

20. Gupta P., Swarup g. Ear-cockle and yellow ear rot disease of wheat. II. Nematode bacterial association. Nemato- logia. 1972. Vol. 18. P. 320–324.

21. Ignatyeva I.M., Karimova E.V., Prikhodko S.I. Diagnostics of the bacterial blight pathogen of bean Xanthomonas axonopodis pv. phaseoli in plant and seed material of grain legumes using molecular genetics methods // AIP Conference Proceedings: 4th International Conference on Modern Synthetic Methodologies for Creating Drugs and Functional Materials, MOSM 2020, Yekaterinburg, 16-20 November 2020. Vol. 2388, Issue 1. – American Institute of Physics Inc.: American Institute of Physics Inc. 2021. P. 030014. doi: 10.1063/5.0068504.

22. Murray T.D., Schroeder B.K., Schneider W.L., Luster D.G., Sechler A., Rogers E.E., Subbotin S.A. Rathayibacter toxicus, Other Rathayibacter Species Inducing Bacterial Head Blight of grasses, and the Potential for Livestock Poisonings // Phytopathology. 2017.Vol. 107(7). P. 804-815. doi: 10.1094/PHYTO-02-17-0047-RVW.

23. Muvingi M., Slovareva O.Y., Ruberts V.S., Igonin V.N. Detection and identification of Rathayibacter tritici in Russian grain crop survey // Biotechnology in plant growing, animal husbandry and agricultural microbiology: Collection of abstracts of reports of the 20th All-Russian Conference of Young Scientists dedicated to the memory of Academician of the Russian Academy of Agricultural Sciences georgy Sergeevich Muromtsev, Moscow, October 27–29, 2020. – Moscow: Federal State Budgetary Scientific Institution “All-Russian Research Institute of Agricultural Biotechnology”. 2020. P. 158– 159. doi: 10.48397/ARRIAB.2020.20.095.

24. Park J., Lee P.A., Lee H.H., Choi K., Lee S.W., Seo Y.S. Comparative genome Analysis of Rathayibacter tritici NCPPB 1953 with Rathayibacter toxicus Strains Can Facilitate Studies on Mechanisms of Nematode Association and Host Infection // The Plant Pathology Journal. 2017. Vol. 33(4). P. 370-381. doi: 10.5423/PPJ.OA.01.2017.0017.

25. Paruthi I. J., Mohinder Singh M. S., gupta D. C. Quantitative and qualitative losses in wheat grains due to’earcockle’and’tundu’. – 1987.

26. Postnikova E., Agarkova I.V., Schneider W.L., Sechler A.J., Riley I.T. CHAPTER 15: Detection of Rathayibacter spp. in Seeds of Cereals and grasses // Detection of Plant-Pathogenic Bacteria in Seed and Other Planting Material, Second Edition. – The American Phytopathological Society. 2017. P. 95-101.

27. PM 7/60 (2) Pantoea stewartii subsp. stewartii // Bulletin OEPP/EPPO Bulletin. 2016. № 46(2). P. 226-236. 28. PM 7/98 (3) Specific requirements for laboratories preparing accreditation for a plant pest diagnostic activity // EPPO Bulletin. 2018. Vol. 48(3). P. 387-404. doi: 10.1111/epp.12508.

28. Reasoner D.J., geldreich E.E. A new medium for the enumeration and subculture of bacteria from potable water // Applied and Environmental Microbiology. 1985. Vol. 49(1). P. 1-7. doi: 10.1128/aem.49.1.1-7.1985.

29. Sabet A.K. On the host range and systematic position of the bacteria responsible for the yellow slime diseases of wheat (Triticum vulgare Vill.) and cocksfoot grass (L. Dactylis glomerata) // Annals of Applied Biology. 1954. Vol. 41. P. 606-611.

30. Starodumova I.P., Dorofeeva L. V., Prisyazhnaya N.V., Tarlachkov S.V., Vasilenko O.V., Avtukh A.N., Ospennikov Y.V., Subbotin S.A., Evtushenko L.I. Rathayibacter tanaceti sp. nov., a Novel Actinobacterium from Tanacetum vulgare Infested by Foliar Nematode Aphelenchoides sp. // Current Microbiology. 2024. Vol. 81. P. 123. https://doi.org/10.1007/s00284-024-03643-7.

31. Zgurskaya H.I., Evtushenko L.I., Akimov V.N., Kalakoutskii L.V. Rathayibacter gen. nov., including the species Rathayibacter rathayi comb. nov., Rathayibacter tritici comb. nov., Rathayibacter iranicus comb. nov., and six strains from annual grasses. International Journal of Systematic and Evolutionary Microbiology. 1993. Vol. 43. P. 143-149. doi: 10.1099/00207713-43-1-143.

32. BLAST. Basic Local Alignment Search Tool [Electronic resource]. – Access mode: https://blast.ncbi.nlm.nih.gov (date of access: 05.12.2024).

33. Rathayibacter tritici strain NCPPB 1953 chromosome, complete genome / NCBI. The National Center for Biotechnology Information. URL: https://www.ncbi.nlm.nih.gov/nuccore/1056838566 (date of access 01.11.2024).

34. Unipro UGENE software / URL: https://ugene.net/ru/download-all.html (last accessed: 04.01.2025).


Review

For citations:


Obolensky R.R., Slovareva O.Yu., Dorofeeva L.V. Evaluation of the real-time PCR applicability for the identification of bacterial ear rot of wheat Rathayibacter tritici. Plant Health and Quarantine. 2025;(1):26-39. (In Russ.) https://doi.org/10.69536/FKR.2025.85.45.003

Views: 124


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-327X (Print)