Study of primers for the diagnosis of phytoplasmas from the Apple proliferation group
https://doi.org/10.69536/t5481-2640-1422-q
Abstract
One of the most dangerous pests for plants are phytoplasmas. Phytopathogens from the Apple proliferation group (16SrX) cause phytoplasmoses in pome and stone fruit crops, which lead to huge losses of fruit and berry products around the world. The 16SrX group includes, in particular, such uncultivated bacteria as: Candidatus Phytoplasma mali, causing apple proliferation; Candidatus Phytoplasma pyri, resulting in pear decline; Candidatus Phytoplasma prunorum, leading to European stone fruit yellows. The first two species are included in the Common List of Quarantine Pests of the Eurasian Economic Union (EAEU). Although they belong to the same group, these phytoplasmas have different natural hosts, insect vectors, and a different set of characteristic symptoms in infected plants. The article presents data on the study of the analytical characteristics (specificity and sensitivity) of specific primers for the detection of phytopathogenic microorganisms from the Apple proliferation group by real-time polymerase chain reaction (PCR) and for subsequent species identification of the causative agent of apple proliferation Candidatus Phytoplasma mali using specific primers classical PCR method. During the experiments, high-quality specific amplification products were obtained. It has been established that using the studied pair of primers for classical PCR, it is possible to diagnose and identify the causative agent of apple proliferation in infected plant material. In this work, the analysis of the studied specific primers was carried out using the NCBI Primer-BLAST online service. For research, we used a collection of phytoplasma DNA from various groups: Apple proliferation, Stolbur, Foxtail palm yellow decline, Peanut witches’ broom and Elm yellows.
About the Authors
I. G. BashkirovaRussian Federation
Ida Bashkirova, Junior Researcher, Acting Head of Research and Methodology Department of Virology and Bacteriology; postgraduate student
Bykovo, Ramenskoye, Moscow Oblast
Moscow
E. V. Karimova
Russian Federation
Elena Karimova, PhD in Biology, Senior Researcher, Head of Research and Methodology Department of Virology and Bacteriology
Bykovo, Ramenskoye, Moscow Oblast
I. P. Smirnova
Russian Federation
Irina Smirnova, Advanced Doctor in Biology, Honored Professor
Moscow
References
1. Bashkirova I., Matyashova G., Gins M. Detection and identification of pathogens of phytoplasmoses of the Apple proliferation group on fruit crops [Vyyavleniye i identifikatsiya vozbuditeley fitoplazmozov gruppy Apple proliferation na plodovykh kulturakh]. Russian agricultural science, 2018a; 3: 10–14 (in Russian).
2. Bashkirova I., Matyashova G., Zavriev S., Ryazantsev D., Shneyder Yu. Approval of the test systems for the detection of the apple and pear phytoplasma. Plant protection and quarantine, 2018b; 7: 40–41.
3. Bashmakova E. Detection of single nucleotide polymorphisms based on derivatives of the Ca2+-regulated photoprotein obelin [Vyyavleniye odnonukleotidnykh polimorfizmov na osnove proizvodnykh Ca2+-reguliruyemogo fotoproteina obelina]: extended abstract of Cand. Biol. Sci. Dissertation: 03.01.06. Krasnoyarsk, 2017, 22 p. (in Russian).
4. Girsova N., Kastalyova T., Mozhaeva K. Method for determining phytoplasmas using molecular diagnostic methods: PCR and RFLP [Metodika opredeleniya fitoplazm s ispol'zovaniyem molekulyarnykh metodov diagnostiki: PCR i RFLP]. M.: Rosselkhozakademiya, 2013, 23 p. (in Russian).
5. Elshin N., Petrov A. Possibilities of qPCR control of mycoplasma contamination of cell cultures [Izucheniye vozmozhnosti ispolzovaniya metoda qPCR dlya kontrolya ot·sut·stviya mikoplazmennoy kontaminatsii v kletochnykh kulturakh]. – BIOpreparations. Prevention, Diagnosis, Treatment, 2017; 17 (3): 173–179 (in Russian).
6. Karimova E., Prikhodko Yu., Shneyder Yu. Phytoplasma – pathogenic agents of stone fruit crops diseases [Fitoplazmy – vozbuditeli bolezney kostochkovykh plodovykh kultur]. Plant Protection and Quarantine, 2019; 5: 35–39 (in Russian).
7. Matyashova G., Morozova O. Guidelines for the detection and identification of the causative agent of pear depletion Candidatus Phytoplasma pyri (Pear decline) [Metodicheskiye rekomendatsii po vyyavleniyu i identifikatsii vozbuditelya istoshcheniya grushi Candidatus Phytoplasma pyri (Pear decline)]. M.: VNIIKR, 2016, 39 p. (in Russian).
8. ISPM 27. International standards for phytosanitary measures. Diagnostic protocols for regulated pests. DP 12: Phytoplasmas. 2018, 18 p.
9. Prikhodko Yu., Matyashova G. Guidelines for the detection and identification of the causative agent of apple proliferation Candidatus Phytoplasma mali (Apple proliferation) [Metodicheskiye rekomendatsii po vyyavleniyu i identifikatsii vozbuditelya proliferatsii yabloni Candidatus Phytoplasma mali (Apple proliferation)]. M.: VNIIKR, 2015, 80 p.
10. Sviridova L., Vankova A. Mycoplasmas are plant pathogens [Mikoplazmy – patogeny rasteniy]. Niva Povolzhya, 2012; 4 (25): 26–32 (in Russian).
11. Shneyder Yu., Prikhodko Yu., Shneyder E., Kuleshova Yu. Assessment of pest risk analysis associated with import, export and movement of seedlings, rootstocks and cuttings of stone fruit crops [Otsenka fitosanitarnykh riskov vrednykh organizmov, svyazannykh s importirovaniyem, eksportirovaniyem i peremeshcheniyem sazhentsev, podvoyev i cherenkov kostochkovykh plodovykh kultur] (ed. by T.V. Artemyeva). M.: VNIIKR, 2017, 503 p.
12. Bashkirova I., Bondarenko G., Kornev K. Study of methods for detecting quarantine phytoplasma’s from the apple proliferation group on the territory of Russia. Phytopathogenic Mollicutes, 2019; 9 (1): 211–212. URL: https://doi.org/10.5958/2249-4677.2019.00106.3.
13. Duduk B. Molecular characterization of phytoplasmas detected in agronomically relevant crops in Serbia. 2009, 127 p.
14. IRPCM Phytoplasma/Spiroplasma Working Team – Phytoplasma Taxonomy Group. Correspondence G. Firrao. ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology, 2004; No. 54: 1243–1255. URL: https://doi.org/10.1099/ijs.0.02854-0.
15. Jarausch W., Saillard C., Dosba F., Bové J.M. Differentiation of mycoplasmalike organisms (MLOs) in European fruit trees by PCR using specific primers derived from the sequence of a chromosomal fragment of the apple proliferation MLO. Applied and Environmental Microbiology, 1994; 60 (8): 2916–2923. URL: https://doi.org/10.1128/aem.60.8.2916-2923.1994.
16. Jomantiene R., Davis R.E., Valiunas D., Alminaite A. New group 16SrIII phytoplasma lineages in Lithuania exhibit interoperon sequence heterogeneity. European Journal of Plant Pathology, 2002; 108 (6): 507–517. URL: https://doi.org/10.1023/A:1019982418063.
17. Lee I.-M., Davis R.E., Gundersen-Rindal D.E. Phytoplasma, phytopathogenic mollicutes. Annual Review of Microbiology, 2000; 54 (1): 221–255. URL: https://doi.org/10.1146/annurev.micro.54.1.221.
18. Mehle N., Nikolić P., Gruden K., Ravnikar M., Dermastia M. Real-time PCR assays for specific detection of three phytoplasmas from apple proliferation group. Phytoplasma: Methods and Protocols, Methods in molecular biology, 2013; Vol. 938: 269–281. URL: https://doi.org/10.1007/978-1-62703-089-2_23.
19. Mehle N., Ravnikar M., Seljak G., Knapic V., Dermastia M. The most widespread phytoplasmas, vectors and measures for disease control in Slovenia. Phytopathogenic Mollicutes, 2011; 1 (2): 65–76. URL: https://doi.org/10.5958/j.2249-4669.1.2.012.
20. Nikolić P., Mehle N., Gruden K., Ravnikar R., Dermastia M. A panel of real-time PCR assays for specific detection of three phytoplasmas from the apple proliferation group. Molecular and Cellular Probes, 2010; 24 (5): 303–309. URL: https://doi.org/10.1016/j.mcp.2010.06.005.
21. Picard C., Afonso T., Benko-Beloglavec A., Karadjova O., Matthews-Berry S., Paunovic S.A., Pietsch M., Reed P., van der Gaag D.J., Ward M. Recommended regulated non-quarantine pests (RNQPs), associated thresholds and risk management measures in the European and Mediterranean region. Bulletin OEPP/EPPO Bulletin, 2018; 48 (3): 552–568. URL: https://doi.org/10.1111/epp.12500.
22. PM 7/62 (3). ‘Candidatus Phytoplasma mali’, ‘Ca. P. pyri’ and ‘Ca. P. prunorum’. Bulletin OEPP/EPPO Bulletin, 2020; 50 (1): 69–85.
23. Seemüller E., Schneider B. ‘Candidatus Phytoplasma mali’, ‘Candidatus Phytoplasma pyri’ and ‘Candidatus Phytoplasma prunorum’, the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. International Journal of Systematic and Evolutionary Microbiology, 2004; Vol. 54: 1217–1226. URL: https://doi.org/10.1099/ijs.0.02823-0.
24. Wei W., Lee I.-M., Davis R.E., Suo X., Zhao Y. Automated RFLP pattern comparison and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. International Journal of Systematic and Evolutionary Microbiology, 2008; Vol. 58: 2368–2377. URL: https://doi.org/10.1099/ijs.0.65868-0.
25. Weintraub P.G., Beanland L. Insect vectors of phytoplasmas. Annual Review of Entomology, 2006; Vol. 51: 91–111. URL: https://doi.org/10.1146/annurev.ento.51.110104.151039.
26. Woese C. Interpreting the universal phylogenetic tree. Proceedings of the National Academy of Sciences of the USA, 2000; Vol. 97: 8392–8396. URL: https://doi.org/10.1073/pnas.97.15.8392.
27. EPPO Global Database. URL: https://gd.eppo.int (last accessed: 19.05.2022).
28. The National Center for Biotechnology Information. URL: https://www.ncbi.nlm.nih.gov/tools/primer-blast/ (last accessed: 21.04.2022).
Review
For citations:
Bashkirova I.G., Karimova E.V., Smirnova I.P. Study of primers for the diagnosis of phytoplasmas from the Apple proliferation group. Plant Health and Quarantine. 2022;(3):26-36. https://doi.org/10.69536/t5481-2640-1422-q