Preview

Plant Health and Quarantine

Advanced search

Molecular genetic methods used for detection of quarantine pests. Innovations, challenges and prospects

https://doi.org/10.69536/FKR.2025.67.86.006

Abstract

Quarantine pests pose a global threat to agriculture, causing annual crop losses of up to 30%. Due to climate change and developed international trade, the emergence of new large suppliers of seeds and planting material, as well as finished products, it is necessary to promptly respond to new challenges – to improve existing approaches and develop new solutions to ensure food security, analyze pest risks with the most accurate and rapid methods. Traditional detection methods, such as microbiological culture and serological tests, require significant time (up to 14 days) and are often not specific enough. Molecular genetic approaches based on DNA / RNA analysis can solve these problems, providing early detection of pathogens before symptoms appear, differentiation of strains at the genome level, monitoring resistance to antibiotics and pesticides, the ability to assess the effectiveness of protective equipment, and detection of latent pathogens in the absence of external manifestations. Modern molecular genetic technologies are revolutionizing the diagnosis of quarantine pests, bacteria, fungi, oomycetes and viruses. The article presents an analysis of methods, including the polymerase chain reaction (PCR), isothermal amplification (LAMP), next-generation sequencing (NGS) and CRISPR systems, with an emphasis on their unique advantages, existing limitations and practical applications. Particular attention is paid to the integration of these technologies into phytosanitary monitoring to prevent the spread of quarantine and agriculturally significant organisms. Practical results obtained using molecular genetic methods demonstrate that a combination of methods significantly improves the accuracy of diagnostics, and the development of portable platforms expands the possibilities of field research.

About the Authors

Denis A. Nikitinsky
All-Russian Plant Quarantine Center (FGBU “VNIIKR”)
Russian Federation

Denis A. Nikitinsky, Junior Researcher, Head of the Resource Sharing Center “Molecular Genetics”, 

Bykovo, Ramenskoye, Moscow Oblast, 140150.

 



Ekaterina V. Nikitinskaya
All-Russian Plant Quarantine Center (FGBU “VNIIKR”)
Russian Federation

Ekaterina V. Nikitinskaya, Junior Researcher, Specialist of the Resource Sharing Center “Molecular Genetics”,

Bykovo, Ramenskoye, Moscow Oblast, 140150.



References

1. Antonova O.S., Rudnitskaya G.E., Tupik A.N., Bulyanitsa A.L., Evstrapov A.A., Kurochkin V.E. “Polymerase chain reaction: Instrumental and methodological implementation. Review of analytical characteristics” [Polimeraznaya tsepnaya reaktsiya:. Pribornaya i metodicheskaya realizatsiya. Obzor analiticheskikh kharakteristik] // Scientific instrument making. 2011. 21 (4), 5–21. (In Russ.)

2. Volkov A.A., Dolgova A.S., Dedkov V.G. “Molecular diagnostic platforms created on the basis of CRISPR-Cas systems” [Molekulyarnyye diagnosticheskiye platformy, sozdannyye na baze sistem CRISPRCas] // Infection and Immunity. 2022. 1, 9-20. DOI: 1015789/2220-7619-SSV1843. (In Russ.)

3. Zubik A., Rudnitskaya G.E., Evstrapov A. “Loop-mediated isothermal amplification (LAMP) method in a microdevice format (review)” [Metod petlevoy izotermicheskoy amplifikatsii (LAMP) v formate mikroustroystva (obzor)] // SCIENTIFIC INSTRUMENTATION. 2021. 31(1):3-43. DOI: 10.18358/np-31-1-i343 (In Russ.)

4. Nazarov P. A., Baleev D. N., Ivanova M. I., Sokolova L. M., Karakozova M. V. “Infectious Plant Diseases: Etiology, Current Status, Problems and Prospects of Plant Protection” [Infektsionnyye bolezni rasteniy: etiologiya, sovremennoye sostoyaniye, problemy i perspektivy zashchity Rasteniy] // ACTA NATURAE. 2020. 12.3 (46). DOI: 10.32607/actanaturae.11026. (In Russ.)

5. Kolesnikov A.V., Kozyr A.V., Shemyakin I.G. “Prospects for the use of aptamers in the diagnostics of bacterial infections” [Perspektivy primeneniya aptamerov v diagnostike bakterial’nykh infektsiy] // Molecular Genetics, Microbiology and Virology. 2012. 2b 1–6. (In Russ.)

6. Lebedeva Yu.L., Cherkashin E.A., Akimkin V.G. “MODERN DIGITAL PCR PLATFORMS” [SOVREMENNYYe PLATFORMY TSIFROVOY PTSR] // Biotechnology, 2024, Vol. 40, No. 1, pp. 61-83. DOI: 10.56304/S023427582401006X. (In Russ.)

7. Ivanov A. V., Safenkova I. V., Zherdev A. V., Dzantiev B. B. “Potential use of isothermal amplification assays for field diagnostics of plant pathogens.” [Potentsial’noye ispol’zovaniye analizov izotermicheskoy amplifikatsii dlya polevoy diagnostiki patogenov rasteniy] // Plants (2021). 10 (11), 2424. doi: 10.3390/plants10112424. (In Russ.)

8. Abdelfattah A., Malacrinò A., Wisniewski M., Cacciola S. O., Schena L. Metabarcoding: A powerful tool to investigate microbial communities and shape future plant protection strategies // Biol. Control. 2018. 120, 1–10. doi: 10.1016/j.biocontrol.2017.07.009.

9. Adams I. P., Glover R. H., Monger W. A., Mumford R., Jackeviciene E., Navalinskiene M., et al. Nextgeneration sequencing and metagenomic analysis: A universal diagnostic tool in plant virology // Mol. Plant Pathol. 2009. 10 (4), 537–545. doi: 10.1111/j.1364-3703.2009.00545.x.

10. Anne-Katrin Mahlein. Plant Disease Detection by Imaging Sensors – Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping // Pland Disease. 2016. 241-251. https://doi.org/10.1094/PDIS-03-15-0340-FE.

11. Antonet M. Svircev, Won-Sik Kim, Susan M. Lehman, Alan Castle. Erwinia amylovora: Modern Methods for Detection and Differentiation // Methods in molecular biology Methods in molecular biology (Clifton, N.J.). 2009. 508:115-29. doi: 10.1007/978-1-59745-062-1_10.

12. Ascoli C. A., Aggeler B. Overlooked benefits of using polyclonal antibodies // BioTechniques 2018. 65 (3), 127–136. doi: 10.2144/btn-2018-0065.

13. Barghouthi S. A. A universal method for the identification of bacteria based on general PCR primers // Indian J. Microbiol. 2011. 51 (4), 430–444. doi: 10.1007/s12088-011-0122-5.

14. Barsukova G.N., Sheudzhen Z.R., Derevenets D.K. Reduction of the area of agricultural and arable land as a global trend of reducing part of resource potential of agricaltural prodaction // International agricultural journal 2021. 6, 6-9. doi: 10.22412/2588-0209-2021-10413.

15. Becherer L., Borst N., Bakheit M., Frischmann S., Zengerle R., von Stetten F. Loop-mediated isothermal amplification (LAMP) – review and classification of methods for sequence-specific detection. Anal. Methods. 2020. 12 (6), 717–746. doi: 10.1039/C9AY02246E.

16. Bester R., Jooste A. E. C., Maree H. J., Burger J. T. Real-time RT-PCR high-resolution melting curve analysis and multiplex RT-PCR to detect and differentiate grapevine leafroll-associated virus 3 variant groups I, II, III and VI // Virol. J. 2012. 9 (1), 219. doi: 10.1186/1743-422X-9-219.

17. Beye M., Fahsi N., Raoult D., Fournier P.-E. Careful use of 16S rRNA gene sequence similarity values for the identification of mycobacterium species // New Microbes New Infect. 2017. 22, 24–29. doi: 10.1016/j.nmni.2017.12.009.

18. Bridle H., Desmulliez M. Chapter 7–biosensors for the detection of waterborne pathogens, in Waterborne pathogens. 2021. 2nd ed. Ed. Bridle, H. (Academic Press), 189–235. doi: 10.1016/B978-0-444-64319-3.00007-1.

19. Buja I., Sabella E., Monteduro A. G., Chiriacò M. S., De Bellis L., Luvisi A., et al. Advances in plant disease detection and monitoring: From traditional assays to infield diagnostics // Sensors. 2021. 21 (6). doi: 10.3390/s21062129.

20. Bush A., Compson Z. G., Monk W. A., Porter T. M., Steeves R., Emilson E., et al. Studying ecosystems with DNA metabarcoding: Lessons from biomonitoring of aquatic macroinvertebrates // Front. Ecol. Evol. 2019. 7. doi: 10.3389/fevo.2019.00434

21. Chen B., Jiang Y., Cao X., Liu C., Zhang N., Shi D. Droplet digital PCR as an emerging tool in detecting pathogens nucleic acids in infectious diseases. // Clinica Chimica Acta. 2021. 517, 156–161. doi: 10.1016/j.cca.2021.02.008.

22. Craw P., Balachandran W. Isothermal nucleic acid amplification technologies for point-of-care diagnostics: A critical review. Lab // Chip. 2021. 12 (14), 2469. doi: 10.1039/c2lc40100b.

23. Doudna J. A., Charpentier E. The new frontier of genome engineering with CRISPR-Cas9 // Science. 2014. 346 (6213), 1258096. doi: 10.1126/science.1258096.

24. Duan Y., Zhou L., Hall D. G., Li W., Doddapaneni H., Lin H., et al. Complete genome sequence of citrus huanglongbing bacterium, ‘Candidatus liberibacter asiaticus’ obtained through metagenomics // Mol. Plant-Microbe Interactions®. 2009. 22 (8), 1011–1020. doi: 10.1094/MPMI-22-8-1011.

25. FAO. The future of food and agriculture: Trends and challenges // Food and Agriculture Organization of the United Nations. 2017. p11–16.

26. FAO. New standards to curb the global spread of plant pests and diseases. 2019. Available at: https://www.fao.org/news/story/en/item/1187738/icode/.

27. Ferone M., Gowen A., Fanning S., Scannell A. G. M. Microbial detection and identification methods: Bench top assays to omics approaches // Compr. Rev. Food Sci. Food Saf. 2020. 19 (6), 3106–3129. doi: 10.1111/1541-4337.12618.

28. Fang and Ramasamy. Current and prospective methods for plant disease detection // Biosensors. 2015. 5, 537–561. doi: 10.3390/bios5030537.

29. Hameed S., Xie L., Ying Y. Conventional and emerging detection techniques for pathogenic bacteria in food science: A review // Trends Food Sci. Technol. 2018. 81, 61–73. doi: 10.1016/j.tifs.2018.05.020.

30. Hayden R. T., Gu Z., Ingersoll J., Abdul-Ali D., Shi L., Pounds S., et al. Comparison of droplet digital PCR to real-time PCR for quantitative detection of cytomegalovirus. J. Clin. // Microbiol. 2013. 51 (2), 540–546. doi: 10.1128/JCM.02620-12.

31. Hindson B. J., Ness K. D., Masquelier D. A., Belgrader P., Heredia N. J., Makarewicz A. J., et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number // Anal. Chem. 2011. 83 (22), 8604–8610. doi: 10.1021/ac202028g

32. Hoshino T., Inagaki F. Molecular quantification of environmental DNA using microfluidics and digital PCR. Syst. Appl // Microbiol. 2012. 35 (6), 390–395. doi: 10.1016/j.syapm.2012.06.006.

33. Hugerth L. W., Andersson A. F. Analysing microbial community composition through amplicon sequencing: From sampling to hypothesis testing // Front. Microbiol. 2017. 8. doi: 10.3389/fmicb.2017.01561.

34. Ivanov A. V., Safenkova I. V., Zherdev A. V., Dzantiev B. B. The potential use of isothermal amplification assays for in-field diagnostics of plant pathogens // Plants. 2021. 10 (11), 2424. doi: 10.3390/plants10112424.

35. Kaminski M. M., Abudayyeh O. O., Gootenberg J. S., Zhang F., Collins J. J. CRISPR-based diagnostics // Nat. Biomed. Eng. 2021. 5 (7). doi: 10.1038/s41551-021-00760-7.

36. Kohn B. LISTERIA detection by commercial immunomagnetic particle-based assays // Encyclopedia of food microbiology. Ed. Robinson, R. K. (Elsevier). 1999. 1222–1228. doi: 10.1006/rwfm.1999.0960.

37. Kralik P., Ricchi M. A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything // Front. Microbiol. 2017. 8. doi: 10.3389/fmicb.2017.00108.

38. Lau H. Y., Botella J. R. Advanced DNA-based point-of-Care diagnostic methods for plant diseases detection // Front. Plant Sci. 2017. 8. doi: 10.3389/fpls.2017.02016

39. Li J., Macdonald J., Von S. F. Review: A comprehensive summary of a decade development of the recombinase polymerase amplification // Analyst. 2018. 144 (1), 31–67. doi: 10.1039/C8AN01621F.

40. Lievens and Thomma. Recent developments in pathogen detection arrays: Implications for fungal plant pathogens // European Journal of Plant Pathology. 2005. 113, 75–89. doi: 10.1007/s10658-005-0425-5.

41. Virol. Methods. 2014.204, 105–108. doi: 10.1016/j.jviromet.2014.02.031.

42. Liu H. Y., Hopping G. C., Vaidyanathan U., Ronquillo Y. C., Hoopes P. C., Moshirfar M. Polymerase chain reaction and its application in the diagnosis of infectious keratitis // Med. Hypothesis Discovery Innovation Ophthalmol. 2019. 8 (3), 152–155.

43. Liu J., Li C., Muhae-Ud-Din G., Liu T., Chen W., Zhang J., et al. Development of the Droplet Digital PCR to Detect the Teliospores of Tilletia controversa Kühn in the Soil With Greatly Enhanced Sensitivity // Front. Microbiol. 2020. 11, 4. doi: 10.3389/fmicb.2020.00004.

44. Lobato I. M., O’Sullivan C. K. Recombinase polymerase amplification: Basics, applications and recent advances. TrAC // Trends Anal. Chem. 2018. 98, 19–35. doi: 10.1016/j.trac.2017.10.015.

45. Loit K., Adamson K., Bahram M., Puusepp R., Anslan S., Kiiker R., et al. Relative performance of MinION (Oxford nanopore technologies) versus sequel (Pacific biosciences) third-generation sequencing instruments in identification of agricultural and forest fungal pathogens // Appl. Environ. Microbiol. 2019. 85 (21), e01368–e01319. doi: 10.1128/AEM.01368-19.

46. López M. M., Bertolini E., Olmos A., Caruso P., Gorri, M. T., Llop P., et al. Innovative tools for detection of plant pathogenic viruses and bacteria // Int. Microbiol. 2003. 6 (4), 233–243. doi: 10.1007/s10123-003-0143-y.

47. López M., Llop P., Olmos A., Marco-Noales E., Cambra M., Bertolini E. Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? // Curr. Issues Mol. Biol. 2009. 11, 13–46. doi: 10.21775/cimb.011.013.

48. Mandal et al. Recent advances in molecular diagnostics of fungal plant pathogens: A mini-review // World Journal of Microbiology and Biotechnology. 2011. 27, 1773–1780. doi: 10.1007/s11274-010-0636-8.

49. Marc Venbrux ,Sam Crauwels, Hans Rediers Current and emerging trends in techniques for plant pathogen detection Front Plant Sci. 2023 May 8;14:1120968. doi: 10.3389/fpls.2023.1120968

50. Martinelli et al.Advanced methods of plant disease detection. A review // Agronomy for Sustainable Development. 2015. 35, 1–25, doi: 10.1007/s13593-014-0246-1.

51. Maurer J. J. Rapid detection and limitations of molecular techniques // Annu. Rev. Food Sci. Technol. 2011. 2 (1), 259–279. doi: 10.1146/annurev.food.080708.100730.

52. Mehetre G. T., Leo V. V., Singh G., Sorokan A., Maksimov I., Yadav M. K., et al. Current developments and challenges in plant viral diagnostics: A systematic review // Viruses. 2021. 13 (3), 412. doi: 10.3390/v13030412.

53. Mirmajlessi S. M., Loit E., Mänd M., Mansouripour S. M. Real-time PCR applied to study on plant pathogens: potential applications in diagnosis – a review // Plant protection Sciense. 2015. 15, 177–190. doi: 10.17221/104/2014-PPS.

54. Mori Y., Nagamine K., Tomita N., Notomi T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation // Biochem. Biophys. Res. Commun. 2001. 289 (1), 150–154. doi: 10.1006/bbrc.2001.5921.

55. Narayanasamy P. // Microbial plant pathogens-detection and disease diagnosis (Springer Netherlands), 2011. pp 5–199. doi: 10.1007/978-90-481-9735-4.

56. Nikitinskaya E., Nikitinskiy D., Ivanova E., Ignatov A. Detection of viral infection using new generation sequencing technology in poultry farms of the Russian Federation // Veterinariya, Zootekhniya i Biotekhnologiya. 2024.10. doi: 10.36871/vet.zoo.bio.202410014

57. Piepenburg O., Williams C. H., Stemple D. L., Armes N. A. DNA Detection using recombination proteins // PloS Biol. 2006. 4 (7), e204. doi: 10.1371/journal.pbio.0040204.

58. Piombo E., Abdelfattah A., Droby S., Wisniewski M., Spadaro D., Schena L. Metagenomics approaches for the detection and surveillance of emerging and recurrent plant pathogens // Microorganisms. 2021. 9 (1). doi: 10.3390/microorganisms9010188.

59. Postollec F., Falentin H., Pavan S., Combrisson J., Sohier D. Recent advances in quantitative PCR (qPCR) applications in food microbiology // Food Microbiol. 2011. 28 (5), 848–861. doi: 10.1016/j.fm.2011.02.008.

60. Quince C., Walker A. W., Simpson J. T., Loman N. J., Segata N. Shotgun metagenomics, from sampling to analysis // Nat. Biotechnol. 2017. 35 (9). doi: 10.1038/nbt.3935.

61. Rajagopal A., Yurk D., Shin C., Menge K., Jacky L., Fraser S., et al. Significant expansion of realtime PCR multiplexing with traditional chemistries using amplitude modulation // Sci. Rep. 2019. 9 (1). doi: 10.1038/s41598-018-37732-y.

62. Reller L. B., Weinstein M. P., Petti C. A. Detection and identification of microorganisms by gene amplification and sequencing // Clin. Infect. Dis. 2007. 44 (8), 1108–1114. doi: 10.1086/512818.

63. Riley M., Williamson M., Maloy O. Plant disease diagnosis // Plant Health Instructor. 2002. doi: 10.1094/PHI-I-2002-1021-01.

64. Roossinck M. J., Martin D. P., Roumagnac P. Plant virus metagenomics: Advances in virus discovery // Phytopathology®. 2015. 105 (6), 716–727. doi: 10.1094/PHYTO-12-14-0356-RVW.

65. Schaad N. W., Frederick R. D., Shaw J., Schneider W. L., Hickson R., Petrillo M. D., et al. Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues // Annu. Rev. Phytopathol. 2003. 41 (1), 305–324. doi: 10.1146/annurev.phyto.41.052002.095435.

66. Sharpton T. J. An introduction to the analysis of shotgun metagenomic data // Front. Plant Sci. 2014. 5. doi: 10.3389/fpls.2014.00209.

67. Shen C.-H. “Chapter 9–amplification of nucleic acids,” in Diagnostic molecular biology. Ed. Shen C.-H. (Academic Press). 2019. 215–247. doi: 10.1016/B978-0-12-802823-0.00009-2.

68. Simon G. Edwards, John O’Callaghan, Alan D.W.Dobson. PCR-based detection and quantification of mycotoxigenic fungi // Mycological Research. 2002. 106 (9), Pages 1005-1025. doi: 10.1017/S0953756202006354

69. Singh A., Jones S., Ganapathysubramanian B., Sarkar S., Mueller D., Sandhu K., et al. Challenges and opportunities in machine-augmented plant stress phenotyping. // Trends Plant Sci. 2021. 26 (1), 53–69. doi: 10.1016/j.tplants.2020.07.010.

70. Slovareva O., Desyaterik A., Domoratskaya D. PCR IDENTIFICATION PSEUDOMONAS FUSCOVAGINAE, A PATHOGEN OF CEREAL CROPS // Risovodstvo. 2024. 23, 1(62), 27-35. doi: 10.33775/1684-2464-2024-62-1-27-35

71. Tanner F., Tonn S., de Wit J., Van den Ackerveken G., Berger B., Plett D. Sensor-based phenotyping of above-ground plant-pathogen interactions // Plant Methods. 2022. 18 (1), 35. doi: 10.1186/s13007-022-00853-7.

72. Taylor S. C., Laperriere G., Germain H. Droplet digital PCR versus qPCR for gene expression analysis with low abundant targets: From variable nonsense to publication quality data // Sci. Rep. 2017. 7 (1). doi: 10.1038/s41598-017-02217-x.

73. Tewari D., Cieply S., Livengood J.Identification of bacteria recovered from animals using the 16S ribosomal RNA gene with pyrosequencing and Sanger sequencin //. J. Vet. Diagn. Invest. 2011. 23 (6), 1104–1108. doi: 10.1177/1040638711425583.

74. Thies J. Chapter 6 – Molecular Approaches to Studying the Soil Biota. In Eldor Paul A. Ed // Soil Microbiology, Ecology and Biochemistry (Fourth Edition). (Academic Press). 2015 . 151–185. doi: 10.1016/B978-0-12-415955-6.00006-2.

75. Toh S. Y., Citartan M., Gopinath S. C. B., Tang T.-H. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay // Biosensors Bioelectron. 2015. 64, 392–403. doi: 10.1016/j.bios.2014.09.026.

76. Välimaa A.-L., Tilsala-Timisjärvi A., Virtanen E. Rapid detection and identification methods for listeria monocytogenes in the food chain – a review // Food Control 2015. 55, 103–114. doi: 10.1016/j.foodcont.2015.02.037.

77. Wang X., Shang X., Huang X. Next-generation pathogen diagnosis with CRISPR/Cas-based detection methods // Emerging Microbes Infect. 2020. 9 (1), 1682–1691. doi: 10.1080/22221751.2020.1793689.

78. Ward E., Foster S. J., Fraaije B. A., Mccartney H. A. Plant pathogen diagnostics: Immunological and nucleic acid-based approaches // Ann. Appl. Biol. 2004. 145 (1), 1–16. doi: 10.1111/j.1744-7348.2004.tb00354.x.

79. Zhao X., Lin C.-W., Wang J., Oh D. H. Advances in rapid detection methods for foodborne pathogens // J. Microbiol. Biotechnol. 2014. 24 (3), 297–312. doi: 10.4014/jmb.1310.10013.

80. Zhao Y., Xia Q., Yin Y., Wang Z. Comparison of droplet digital PCR and quantitative PCR assays for quantitative detection of xanthomonas citri subsp. Citri // PloS One. 2016. 11 (7), e0159004. doi: 10.1371/journal.pone.0159004.

81. Zubler and Yoon. Proximal Methods for Plant Disease Detection Using Hyperspectral Imaging // Mol Remote Sensing. 2020. 12, 3539. doi: 10.3390/rs12213539.


Review

For citations:


Nikitinsky D.A., Nikitinskaya E.V. Molecular genetic methods used for detection of quarantine pests. Innovations, challenges and prospects. Plant Health and Quarantine. 2025;(3):85-107. https://doi.org/10.69536/FKR.2025.67.86.006

Views: 30


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-327X (Print)