Preview

Plant Health and Quarantine

Advanced search

Analysis of genetic differences of some Pseudomonas syringae pathovars

https://doi.org/10.69536/s9564-4378-7598-q

Abstract

Pseudomonas syringae pv. maculicola is a phytopathogen affecting cruciferous plants worldwide. P. s. pv. maculicola is regulated by the phytosanitary requirements of the following countries: China, Israel, Mexico, Egypt, Sudan and Indonesia. Thus, there was a need to establish the compliance of the places of production and export products with the requirements of the countries, Russia’s trading partners, using laboratory diagnostics methods. Due to the high genetic similarity of P. syringae pathovars, when conducting laboratory diagnostics, of particular interest is the need to distinguish maculicola pathovar from tomato pathovar. These bacteria can simultaneously be present on plants of the Cruciferous (Cabbage) family and cause bacteriosis. It is also difficult to identify the causative agent of bacteriosis on cruciferous plants, the bacterium P. cannabina pv. alisalensis. This species has a wide range of host plants, including cruciferous plants. In addition, host plants areas and symptoms of P. s. pv. maculicola and P. с. pv. alisalensis coincide, which can also lead to confusion in the identification. In order to analyze the genetic differences of some Pseudomonas syringae pathovars, as well as the search for specific genetic markers that can be used in laboratory diagnosis of P. s. pv. maculicola, we searched for a potential target by studying proteins corresponding to 293 available genomic assemblies of some P. syringae pathovars, as well as 43 genomic assemblies of closely related species P. cannabina and P. savastanoi. The analysis showed a high similarity of most of the analyzed sequences with the sequences of P. c. pv. alisalensis pathovar.

About the Authors

S. I. Prikhodko
FGBU “All-Russian Plant Quarantine Center” (FGBU “VNIIKR”)
Russian Federation

Svetlana Prikhodko, Researcher, Head of Bacteriology and GMO Analysis Laboratory, Laboratory Testing Center

Bykovo, Ramenskoye, Moscow Oblast



A. B. Yaremko
FGBU “All-Russian Plant Quarantine Center” (FGBU “VNIIKR”)
Russian Federation

Anastasia Yaremko, Junior Researcher, Molecular and Genetic Diagnostic Methods Department

Bykovo, Ramenskoye, Moscow Oblast



E. V. Starikova
FGBU “All-Russian Plant Quarantine Center” (FGBU “VNIIKR”)
Russian Federation

Elizaveta Starikova, Agronomist, Virology Laboratory, Laboratory Testing Center

Bykovo, Ramenskoye, Moscow Oblast



K. P. Kornev
FGBU “All-Russian Plant Quarantine Center” (FGBU “VNIIKR”)
Russian Federation

Konstantin Kornev, PhD in Biology, Deputy Director

Bykovo, Ramenskoye, Moscow Oblast



References

1. Prikhodko S.I., Iaremko A.B., Kornev K.P. Testing of different methods for identification of bacterial leaf spot (Syringae pv. maculicola (Mcculloch) Young et al.) plant pathogen in cauliflower leaves. Taurida Bulletin of Agrarian Science, 2021; 1 (25): 174–186. URL: https://doi.org/10.33952/2542-0720-2021-1-25-174-186 (in Russian).

2. Anzai Y., Kim H., Park J., Wakabayashi H., Oyaizu H. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. International journal of systematic and evolutionary microbiology, 2000; 50 (4): 1563–1589. URL: https://doi.org/10.1099/00207713-50-4-1563.

3. Cuppels D., Ainsworth T. Molecular and Physiological Characterization of Pseudomonas syringae pv. tomato and Pseudomonas syringae pv. maculicola Strains That Produce the Phytotoxin Coronatine. Applied and Environmental Microbiology, 1995; 61 (10): 3530–3536. URL: https://doi.org/10.1128/aem.61.10.3530-3536.1995.

4. Gardan L., Shafik H., Belouin S., Broch R., Grimont F., Grimont P.A.D. DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int. J. System. Bact., 1999; No. 49: 469–478. URL: https://doi.org/10.1099/00207713-49-2-469.

5. Gironde S., Manceau C. Housekeeping Gene Sequencing and Multilocus Variable-Number Tandem-Repeat Analysis to Identify Subpopulations within Pseudomonas syringae pv. maculicola and Pseudomonas syringae pv. tomato That Correlate with Host Specificity. Applied and Environmental Microbiology, 2012; 78 (9): 3266–3279. URL: https://doi.org/10.1128/AEM.06655-11.

6. Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 2010; 59 (3): 307–321.

7. Hwang M., Morgan R., Sarkar S., Wang P., Guttman D. Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Applied and Environmental Microbiology, 2005; 71 (9): 5182–5191. URL: https://doi.org/10.1128/AEM.71.9.5182-5191.2005.

8. Iličić R., Balaž J., Stojšin V., Bagi F., Pivić R., Stanojković-Sebić A., Jošić D. Molecular characterization of Pseudomonas syringae pvs. from different host plants by repetitive sequence-based PCR and multiplex-PCR. Zemdirbyste-Agriculture, 2016; 103 (2): 199–206. URL: https://doi.org/10.13080/z-a.2016.103.026.

9. Morris C., Kinkel L., Xiao K., Prior P., Sands D. Surprising niche for the plant pathogen Pseudomonas syringae. Infection,GeneticsandEvolution, 2007; No. 7: 84–92.

10. Sakata N., Ishiga T., Ishiga Y. Pseudomonas cannabina pv. alisalensis TrpA Is Required for Virulence in Multiple Host Plants. Frontiers in microbiology, 2021; No. 12: 1–11. URL: https://doi.org/10.3389/fmicb.2021.659734.

11. Sarkar S., Guttman D. Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Applied and Environmental Microbiology, 2004; 70 (4): 1999–2012. URL: https://doi.org/10.1128/AEM.02553-07.

12. CABI Crop Protection Compendium, 2021. URL: https://www.cabi.org.

13. MUSCLE (v. 3.8.31). URL: https://drive5.com/muscle/downloads_v3.htm.

14. A multiple alignment viewer (MView). URL: https://www.ebi.ac.uk/Tools/msa/mview/.

15. RefSeq: NCBI Reference Sequence Database, 2021. URL: https://www.ncbi.nlm.nih.gov/refseq/.

16. TreeDyn (v. 198.3). URL: http://phylogeny.lirmm.fr/phylo_cgi/one_task.cgi?task_type=treedyn.


Review

For citations:


Prikhodko S.I., Yaremko A.B., Starikova E.V., Kornev K.P. Analysis of genetic differences of some Pseudomonas syringae pathovars. Plant Health and Quarantine. 2022;(2):50-59. https://doi.org/10.69536/s9564-4378-7598-q

Views: 338


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-327X (Print)